login
Numbers m such that the factorizations of m..m+10 have the same number of primes (including multiplicities).
11

%I #14 Jun 28 2024 09:29:22

%S 202536181,913535284,1124342785,1443929905,1587749041,1688485665,

%T 1733574769,2090053141,2308638625,2403102228,2751673525,2841766801,

%U 2898584161,2936217602,3195380868,3195380869,3324630612,3423884341,3520752468

%N Numbers m such that the factorizations of m..m+10 have the same number of primes (including multiplicities).

%C a(111) = 21117216104 is the first term where the number of primes is 5. - _Zak Seidov_ and _Robert Israel_, Jun 27 2024

%o (PARI) list(lim)=my(v=List(),ct,cur); forfactored(n=202536181,lim\1+10, my(t=bigomega(n)); if(t==cur, if(ct++>9, listput(v,n[1]-10)), cur=t; ct=0)); Vec(v)

%Y Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), this sequence (k=10).

%K nonn

%O 1,1

%A _Charles R Greathouse IV_, Oct 24 2022