Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 23 2022 23:37:17
%S 1,2,3,4,6,8,9,10,12,5,14,15,7,18,21,16,24,20,27,22,30,11,25,33,35,36,
%T 28,39,26,42,13,32,52,34,65,17,40,51,38,45,19,48,57,44,54,55,46,50,23,
%U 56,69,49,60,63,58,66,29,62,87,31,72,93,64,75,68,70,85,74
%N a(1)=1,a(2)=2,a(3)=3. Thereafter, if there are prime divisors p of a(n-2) which do not divide a(n-1), a(n) is the least novel multiple of any such p. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-2).
%C In other words, if a(n-2) has k prime divisors p_j; 1 <= j <= k which do not divide a(n-1), where 1 <= k <= omega(a(n-2)), and if m_j*p_j is the least multiple of p_j which is not already a term, then a(n) = Min{m_j*p_j; 1 <= j <= k}. Otherwise, every prime divisor of a(n-2) also divides a(n-1), in which case a(n) is the least multiple of the squarefree kernel of a(n-2) which is not already a term.
%C Unlike in A064413, a prime p occurrence here is not directly flanked by multiples of p, but by numbers x, y sharing divisors other than p. The terms preceding and following x and y are divisible by p. Typically we observe m*p, x, p, y, r*p, where gcd(x, y) > 1, for multiples m,r of p which do not always follow the (2,3) pattern observed in A064413 and elsewhere. The case of p = 13 is remarkable for being preceded and followed by two multiples of itself (the first five multiples of 13 occur within the span of eight consecutive terms).
%C Conjecture 1: A permutation of the positive integers with primes in natural order.
%C Conjecture 2: The primes are the slowest numbers to appear (see also A352187).
%H Michael De Vlieger, <a href="/A357992/a357992.png">Scatterplot of a(n)</a>, n = 1..2^20.
%H Michael De Vlieger, <a href="/A357992/a357992_1.png">Log-log scatterplot of a(n)</a>, n = 1..2^12 labeling records in red, local minima in blue, highlighting primes in green and other prime powers in gold.
%e With a(2)=2, and a(3)=3, a(4) must be 4, the least unused multiple of 2.
%e Likewise, with a(3),a(4) = 3,4 a(5) must be the 6, the least unused multiple of 3.
%e Since every divisor of 4 also divides 6 a(6) = 8, the least unused multiple of 2, (squarefree kernel of 4).
%e Since a(8),a(9) = 10,12 and 5 is the only prime dividing 10 but not 12, it follows that a(10) = 5.
%t nn = 68; c[_] = False; q[_] = 1; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; q[2] = 2; Do[m = FactorInteger[a[n - 1]][[All, 1]]; f = Select[m, CoprimeQ[#, a[n - 2]] &]; If[Length[f] == 0, While[Set[k, # * q[#]]; c[k], q[#]++] &[Times @@ m], Set[{k, q[#1]}, {#2, #2/#1}] & @@ First@ MaximalBy[Map[{#, Set[g, q[#]]; While[c[g #], g++]; # g} &, f], Last] ]; Set[{a[n], c[k]}, {k, True}], {n, 3, nn}]; Array[a, nn] (* _Michael De Vlieger_, Oct 23 2022 *)
%Y Cf. A001221, A064413, A352187, A357963.
%K nonn
%O 1,2
%A _David James Sycamore_, Oct 23 2022
%E More terms from _Michael De Vlieger_, Oct 23 2022