Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 26 2023 20:16:18
%S 1,4,9,12,16,25,30,36,40,48,49,63,64,70,81,84,90,100,108,112,120,121,
%T 144,154,160,165,169,192,196,198,210,220,225,252,256,264,270,273,280,
%U 286,289,300,324,325,336,351,352,360,361,364,390,400,432,441,442,448
%N Numbers with a divisor having the same sum of prime indices as their quotient.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H Robert Israel, <a href="/A357976/b357976.txt">Table of n, a(n) for n = 1..10000</a>
%e The terms together with their prime indices begin:
%e 1: {}
%e 4: {1,1}
%e 9: {2,2}
%e 12: {1,1,2}
%e 16: {1,1,1,1}
%e 25: {3,3}
%e 30: {1,2,3}
%e 36: {1,1,2,2}
%e 40: {1,1,1,3}
%e 48: {1,1,1,1,2}
%e 49: {4,4}
%e For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
%p filter:= proc(n) local F,s,t,i,R;
%p F:= ifactors(n)[2];
%p F:= map(t -> [numtheory:-pi(t[1]),t[2]], F);
%p s:= add(t[1]*t[2],t=F)/2;
%p if not s::integer then return false fi;
%p try
%p R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20);
%p catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false;
%p end try;
%p true
%p end proc:
%p filter(1):= true:
%p select(filter, [$1..1000]); # _Robert Israel_, Oct 26 2023
%t sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
%t Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]
%Y The partitions with these Heinz numbers are counted by A002219.
%Y A subset of A300061.
%Y The squarefree case is A357854, counted by A237258.
%Y Positions of nonzero terms in A357879.
%Y A001222 counts prime factors, distinct A001221.
%Y A056239 adds up prime indices, row sums of A112798.
%Y Cf. A033879, A033880, A064914, A181819, A213086, A235130, A237194, A276107, A300273, A321144, A357975.
%K nonn
%O 1,2
%A _Gus Wiseman_, Oct 26 2022