login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest c for which (s+c)^2-n is a square, where s = floor(sqrt(n)), or -1 if no such c exists.
1

%I #161 Oct 27 2022 07:35:06

%S 0,0,-1,1,0,1,-1,2,1,0,-1,3,1,4,-1,1,0,5,-1,6,2,1,-1,8,1,0,-1,1,3,10,

%T -1,11,1,2,-1,1,0,13,-1,2,1,15,-1,16,6,1,-1,18,1,0,-1,3,7,20,-1,1,2,4,

%U -1,23,1,24,-1,1,0,1,-1,26,10,5,-1,28,1,29,-1,2,12,1,-1,32

%N a(n) is the smallest c for which (s+c)^2-n is a square, where s = floor(sqrt(n)), or -1 if no such c exists.

%C c exists iff n != 2 (mod 4), and it allows n to be written as the difference of two perfect squares.

%C This gives a factorization n = x*y where x and y may or may not be primes: let s = floor(sqrt(n)), u = a(n) + s and v = u^2 - n; then w = sqrt(v), x = u - w, y = u + w and x*y == n.

%C The Fermat factorization algorithm seeks such a form, starting from s, so that a(n) is the number of steps it must take for n != 2 (mod 4).

%C a(n) >= 1 if n is not square and is writable as a difference of squares.

%C a(n) = 0 if n is square.

%C a(n) = -1 if n is not writable as a difference of squares.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fermat%27s_factorization_method">Fermat's factorization method</a>

%e n prime square n == 2 (mod 4) c s v=(s+c)^2-n u w x y x*y

%e -- ----- ------ -------------- -- -- ----------- -- -- -- -- ---

%e 76 F F F 12 8 324 20 68 2 38 76

%e 13 T F F 4 3 36 7 6 1 13 13

%e 25 F T F 0 0 0 5 0 5 5 25

%e 7 T F T -1 - - - - - - -

%o (Python)

%o from gmpy2 import *

%o def fermat(n):

%o a, rem = isqrt_rem(n)

%o b2 = -rem

%o c0 = (a << 1) + 1

%o c = c0

%o while not is_square(b2):

%o b2 += c

%o c += 2

%o return (c-c0) >> 1

%o def A357928(n):

%o if is_square(n):

%o return 0

%o elif ((n-2) % 4) != 0:

%o return fermat(n)

%o else:

%o return -1

%o (Python)

%o from math import isqrt

%o from itertools import takewhile

%o from sympy import divisors

%o def A357928(n): return -1 if n&3==2 else min((m>>1 for d in takewhile(lambda d:d**2<=n,divisors(n)) if not((m:=n//d+d) & 1)),default=0) - isqrt(n) # _Chai Wah Wu_, Oct 26 2022

%o (PARI) a(n) = if ((n%4)==2, -1, my(s=sqrtint(n), c=0); while (!issquare((s+c)^2-n), c++); c); \\ _Michel Marcus_, Oct 24 2022

%Y Cf. A177713, A037074.

%K sign

%O 0,8

%A _Darío Clavijo_, Oct 20 2022