OFFSET
1,2
COMMENTS
All primes in this sequence are primes of the form 2^n - 1. This is true because phi(p) = 2^n - 2 if p = 2^n - 1 is a Mersenne prime. - Thomas Scheuerle, Oct 19 2022
274878976349 = a(38) < a(37) = 274881227398. - Martin Ehrenstein, Oct 24 2022
d(k) <= A070319(2^n). - David A. Corneth, Oct 25 2022
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..160 (a(35)..a(38) from Martin Ehrenstein; a(39)..a(49) from David A. Corneth)
EXAMPLE
a(3) = 7 because phi(7)+d(7) = 6+2 = 2^3, and 7 is the least number that works.
MAPLE
V:= Array(0..23): count:= 0:
for n from 1 while count < 23 do
s:= phi(n)+tau(n);
t:= padic:-ordp(s, 2);
if V[t] = 0 and s = 2^t then
V[t]:= n; count:= count+1;
fi
od:
convert(V, list)[2..-1];
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 19 2022
EXTENSIONS
a(27)-a(33) from Giorgos Kalogeropoulos, Oct 22 2022
a(34) from Martin Ehrenstein, Oct 24 2022
STATUS
approved