login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions that can be obtained by iteratively adding and multiplying together parts of the integer partition with Heinz number n.
0

%I #7 Oct 17 2022 12:32:10

%S 1,1,1,3,1,3,1,6,2,3,1,7,1,3,3,11,1,7,1,8,3,3,1,14,3,3,4,8,1,11,1,19,

%T 3,3,3,18,1,3,3,18,1,12,1,8,8,3,1,27,3,10,3,8,1,16,3,19,3,3,1,25,1,3,

%U 8,33,3,12,1,8,3,12,1,35,1,3,11,8,3,12,1,34,9

%N Number of integer partitions that can be obtained by iteratively adding and multiplying together parts of the integer partition with Heinz number n.

%C The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

%e The a(n) partitions for n = 1, 4, 8, 9, 12, 16, 20, 24:

%e () (1) (1) (4) (2) (1) (3) (2)

%e (2) (2) (22) (3) (2) (4) (3)

%e (11) (3) (4) (3) (5) (4)

%e (11) (21) (4) (6) (5)

%e (21) (22) (11) (31) (6)

%e (111) (31) (21) (32) (21)

%e (211) (22) (41) (22)

%e (31) (311) (31)

%e (111) (32)

%e (211) (41)

%e (1111) (211)

%e (221)

%e (311)

%e (2111)

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];

%t Table[Length[ReplaceListRepeated[{primeMS[n]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}]],{n,100}]

%Y The single-part partitions are counted by A319841, with an inverse A319913.

%Y The minimum is A319855, maximum A319856.

%Y A000041 counts integer partitions.

%Y A001222 counts prime indices, distinct A001221.

%Y A056239 adds up prime indices.

%Y A066739 counts representations as a sum of products.

%Y Cf. A000792, A001055, A001970, A005520, A048249, A063834, A066815, A318948, A319850, A319909, A319910.

%K nonn

%O 1,4

%A _Gus Wiseman_, Oct 17 2022