login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^(n+1))^n * A(x)^(n+1).
3

%I #7 Dec 24 2022 11:17:07

%S 1,3,15,114,1086,10824,114382,1252002,14083275,161810358,1890774909,

%T 22401092826,268465408738,3248818848876,39643793276526,

%U 487251937616006,6026537732208078,74954027622814455,936840765257368687,11761260253206563461,148240496011414115676

%N a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^(n+1))^n * A(x)^(n+1).

%C Related identity: 0 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (y - x^n)^(n-1), which holds formally for all y.

%H Paul D. Hanna, <a href="/A357794/b357794.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.

%F (1) 1 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^n * (1 - x^(n+1))^n * A(x)^(n+1).

%F (2) 1 = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)/2 * x^(n*(n-2)) / ((1 - x^(n-1))^n * A(x)^(n-1)).

%e G.f.: A(x) = 1 + 3*x + 15*x^2 + 114*x^3 + 1086*x^4 + 10824*x^5 + 114382*x^6 + 1252002*x^7 + 14083275*x^8 + 161810358*x^9 + 1890774909*x^10 + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff( sum(n=-#A, #A, n*(n+1)/2 * x^n * if(n==-1,0, (1 - x^(n+1) +x*O(x^#A) )^n) * Ser(A)^(n+1) ), #A-1) ); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff( sum(n=-#A, #A, (-1)^n * n*(n-1)/2 * x^(n*(n-2)) * if(n==1,0, 1/(1 - x^(n-1) +x*O(x^#A) )^n) / Ser(A)^(n-1) ), #A-1) ); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A357158, A357795, A357796.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 22 2022