login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n in A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
2

%I #26 Mar 14 2023 05:13:24

%S 1,1,1,3,7,20,60,189,613,2039,6918,23850,83315,294282,1049279,3771685,

%T 13653313,49730599,182130129,670274170,2477514172,9193599339,

%U 34237330355,127914531260,479318575375,1800971051420,6783809423496,25611913597250,96903193235645,367363376407250

%N a(n) = coefficient of x^n in A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

%C Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n)^n, which holds as a formal power series in x.

%C Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - C(x)^n)^n / (1 - C(x))^n, where C(x) = x + C(x)^2.

%H Paul D. Hanna, <a href="/A357792/b357792.txt">Table of n, a(n) for n = 0..400</a>

%F Given C(x) = x + C(x)^2, g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by:

%F (1) A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n.

%F (2) A(x) = Sum_{n>=1} (-1)^(n-1) * C(x)^(n*(n-1)) / (1 - C(x)^n)^n.

%F (3) A(x) = Sum_{n>=0} x^n * [ (1 - C(x)^n) / (1 - C(x)) ]^n.

%F (4) A(x) = Sum_{n>=1} -(-1/x)^n * C(x)^(n^2) / [ (1 - C(x)^n) / (1 - C(x)) ]^n.

%F a(n) ~ c * 2^(2*n) / n^(3/2), where c = 0.1930490961334149255878338532701052858837... - _Vaclav Kotesovec_, Mar 14 2023

%e G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 20*x^5 + 60*x^6 + 189*x^7 + 613*x^8 + 2039*x^9 + 6918*x^10 + 23850*x^11 + 83315*x^12 + ...

%e Let C = C(x) = x + C(x)^2, then

%e A(x) = 1 + C*(1 - C) + C^2*(1 - C^2)^2 + C^3*(1 - C^3)^3 + C^4*(1 - C(x)^4)^4 + C^5*(1 - C(x)^5)^5 + ... + C(x)^n * (1 - C(x)^n)^n + ...

%e also,

%e A(x) = 1 + x*(1) + x^2*(1 + C)^2 + x^3*(1 + C + C^2)^3 + x^4*(1 + C + C^2 + C^3)^4 + x^5*(1 + C + C^2 + C^3 + C^4)^5 + x^6*(1 + C + C^2 + C^3 + C^4 + C^5)^6 + ... + x^n*(1 + C + C^2 + C^3 + ... + C^(n-1))^n + ...

%e further,

%e A(x) = 1/(1 - C) - C^2/(1 - C^2)^2 + C^6/(1 - C^3)^3 - C^12/(1 - C^4)^4 + C^20/(1 - C^5)^5 + ... + (-1)^(n-1) * C(x)^(n*(n-1)) / (1 - C^n)^n + ...

%e where the related Catalan series, C(x) = (1 - sqrt(1 - 4*x))/2, begins:

%e C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + ... + A000108(n)*x^(n+1) + ...

%e SPECIFIC VALUES.

%e The radius of convergence of the power series A(x) equals 1/4.

%e The power series A(x) converges at x = 1/4 to

%e A(1/4) = 1.578564238051657388445969550353857020762848420638921268996...

%e which equals the following sums:

%e (1) A(1/4) = Sum_{n>=0} (2^n - 1)^n / 2^(n*(n+1)),

%e (2) A(1/4) = Sum_{n>=1} (-1)^(n-1) * 2^n / (2^n - 1)^n.

%o (PARI) {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));

%o A = sum(m=0,n, C^m * (1 - C^m)^m); polcoeff(A,n)}

%o for(n=0,30, print1(a(n),", "))

%o (PARI) {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));

%o A = sum(m=0,n, x^m * (1 - C^m)^m/(1 - C)^m); polcoeff(A,n)}

%o for(n=0,30, print1(a(n),", "))

%o (PARI) {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));

%o A = sum(m=1,n+1, (-1)^(m-1) * C^(m*(m-1)) / (1 - C^m)^m); polcoeff(A,n)}

%o for(n=0,30, print1(a(n),", "))

%Y Cf. A357793, A000108.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Dec 14 2022