Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 24 2023 13:03:43
%S 0,1,2,2,3,4,4,8,4,15,17,22,48,40,130,88,287,323,543,1084,1145,2938,
%T 3141,6928,9770,15585,29249,37540,78464,103289,194265,299752,475086,
%U 846933,1216749,2261920,3320935,5795349,9292376,14825858,25570823,39030115,68265801,106030947,178696496
%N Number of integer compositions of n with integer geometric mean.
%e The a(6) = 4 through a(9) = 15 compositions:
%e (6) (7) (8) (9)
%e (33) (124) (44) (333)
%e (222) (142) (2222) (1224)
%e (111111) (214) (11111111) (1242)
%e (241) (1422)
%e (412) (2124)
%e (421) (2142)
%e (1111111) (2214)
%e (2241)
%e (2412)
%e (2421)
%e (4122)
%e (4212)
%e (4221)
%e (111111111)
%t Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],IntegerQ[GeometricMean[#]]&]],{n,0,15}]
%o (Python)
%o from math import prod, factorial
%o from sympy import integer_nthroot
%o from sympy.utilities.iterables import partitions
%o def A357710(n): return sum(factorial(s)//prod(factorial(d) for d in p.values()) for s,p in partitions(n,size=True) if integer_nthroot(prod(a**b for a, b in p.items()),s)[1]) if n else 0 # _Chai Wah Wu_, Sep 24 2023
%Y The unordered version (partitions) is A067539, ranked by A326623.
%Y Compositions with integer average are A271654, partitions A067538.
%Y Subsets whose geometric mean is an integer are A326027.
%Y The version for factorizations is A326028.
%Y The strict case is A339452, partitions A326625.
%Y These compositions are ranked by A357490.
%Y A011782 counts compositions.
%Y Cf. A025047, A051293, A078174, A078175, A102627, A320322, A326622, A326624, A326641, A357182, A357183.
%K nonn
%O 0,3
%A _Gus Wiseman_, Oct 15 2022
%E More terms from _David A. Corneth_, Oct 17 2022