login
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * (exp(x) - 1) ).
8

%I #25 Jan 22 2024 13:02:02

%S 1,1,0,1,0,0,1,0,1,0,1,0,2,3,0,1,0,3,6,8,0,1,0,4,9,18,25,0,1,0,5,12,

%T 30,70,97,0,1,0,6,15,44,135,330,434,0,1,0,7,18,60,220,705,1694,2095,0,

%U 1,0,8,21,78,325,1228,3906,9202,10707,0,1,0,9,24,98,450,1905,7196,22953,53334,58194,0

%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * (exp(x) - 1) ).

%H Andrew Howroyd, <a href="/A357681/b357681.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.

%F T(n,k) = Sum_{j=0..floor(n/2)} k^j * Stirling2(n,2*j).

%F T(n,k) = ( Bell_n(sqrt(k)) + Bell_n(-sqrt(k)) )/2, where Bell_n(x) is n-th Bell polynomial.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 0, 0, 0, 0, 0, 0, ...

%e 0, 1, 2, 3, 4, 5, ...

%e 0, 3, 6, 9, 12, 15, ...

%e 0, 8, 18, 30, 44, 60, ...

%e 0, 25, 70, 135, 220, 325, ...

%o (PARI) T(n, k) = sum(j=0, n\2, k^j*stirling(n, 2*j, 2));

%o (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);

%o T(n, k) = round((Bell_poly(n, sqrt(k))+Bell_poly(n, -sqrt(k))))/2;

%Y Columns k=0-4 give: A000007, A024430, A264036, A357615, A065143.

%Y Column k=9 gives A357667.

%Y Main diagonal gives A357682.

%Y Cf. A292860.

%K nonn,tabl

%O 0,13

%A _Seiichi Manyama_, Oct 09 2022