login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lattice paths from (0,0) to (i,n-2*i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}.
3

%I #14 Nov 08 2022 01:47:04

%S 1,0,1,1,1,2,3,3,6,9,10,19,29,34,63,97,118,215,333,416,749,1165,1485,

%T 2650,4135,5355,9490,14845,19473,34318,53791,71313,125104,196417,

%U 262735,459152,721887,973027,1694914,2667941,3619955,6287896,9907851,13521307,23429158

%N Number of lattice paths from (0,0) to (i,n-2*i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}.

%H Alois P. Heinz, <a href="/A357654/b357654.txt">Table of n, a(n) for n = 0..2500</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%F a(n) = Sum_{k=0..floor(n/2)} A120730(n-k, k). - _G. C. Greubel_, Nov 07 2022

%p b:= proc(x, y) option remember; `if`(min(x, y)<0 or y>x, 0,

%p `if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)))

%p end:

%p a:= n-> add(b(i, n-2*i), i=ceil(n/3)..floor(n/2)):

%p seq(a(n), n=0..44);

%t A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];

%t A357654[n_]:= Sum[A120730[n-k,k], {k,0,Floor[n/2]}];

%t Table[A357654[n], {n,0,50}] (* _G. C. Greubel_, Nov 07 2022 *)

%o (Magma)

%o A120730:= func< n, k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;

%o A357654:= func< n | (&+[A120730(n-k, k): k in [0..Floor(n/2)]]) >;

%o [A357654(n): n in [0..50]]; // _G. C. Greubel_, Nov 07 2022

%o (SageMath)

%o def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)

%o def A357654(n): return sum(A120730(n-k,k) for k in range((n//2)+1))

%o [A357654(n) for n in range(51)] # _G. C. Greubel_, Nov 07 2022

%Y Cf. A120730, A165407, A357655.

%K nonn,walk

%O 0,6

%A _Alois P. Heinz_, Oct 07 2022