login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer compositions of n into parts that are alternately equal and unequal.
19

%I #16 Jun 01 2024 05:40:07

%S 1,1,2,1,3,3,5,5,9,7,17,14,28,25,49,42,87,75,150,132,266,226,466,399,

%T 810,704,1421,1223,2488,2143,4352,3759,7621,6564,13339,11495,23339,

%U 20135,40852,35215,71512,61639,125148,107912,219040,188839,383391,330515,670998

%N Number of integer compositions of n into parts that are alternately equal and unequal.

%H Alois P. Heinz, <a href="/A357643/b357643.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (1 + Sum_{k>0} (x^k)/(1 + x^(2*k)))/(1 - Sum_{k>0} (x^(2*k))/(1 + x^(2*k))). - _John Tyler Rascoe_, May 28 2024

%e The a(1) = 1 through a(8) = 9 compositions:

%e (1) (2) (3) (4) (5) (6) (7) (8)

%e (11) (22) (113) (33) (115) (44)

%e (112) (221) (114) (223) (116)

%e (1122) (331) (224)

%e (2211) (11221) (332)

%e (1133)

%e (3311)

%e (22112)

%e (112211)

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,15}]

%o (PARI)

%o C_x(N) = {my(x='x+O('x^N), h=(1+sum(k=1,N, (x^k)/(1+x^(2*k))))/(1-sum(k=1,N, (x^(2*k))/(1+x^(2*k))))); Vec(h)}

%o C_x(50) \\ _John Tyler Rascoe_, May 28 2024

%Y The even-length version is A003242, ranked by A351010, partitions A035457.

%Y Without equal relations we have A016116, equal only A001590 (apparently).

%Y The version for partitions is A351005.

%Y The opposite version is A357644, partitions A351006.

%Y A011782 counts compositions.

%Y A357621 gives half-alternating sum of standard compositions, skew A357623.

%Y A357645 counts compositions by half-alternating sum, skew A357646.

%Y Cf. A029862, A035544, A097805, A122129, A122134, A122135, A351003, A351004, A351007, A357136, A357641.

%K nonn

%O 0,3

%A _Gus Wiseman_, Oct 12 2022

%E More terms from _Alois P. Heinz_, Oct 12 2022