login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the half-alternating sum of the prime indices of k is 0.
23

%I #12 Oct 10 2023 16:22:30

%S 1,12,16,30,63,70,81,108,154,165,192,256,273,286,300,325,442,480,561,

%T 588,595,625,646,700,741,750,874,931,972,1008,1045,1080,1120,1173,

%U 1296,1334,1452,1470,1495,1540,1653,1728,1771,1798,2028,2139,2294,2401,2430

%N Numbers k such that the half-alternating sum of the prime indices of k is 0.

%C We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%C If k is a term, then so is m^4 * k for any m >= 1. - _Robert Israel_, Oct 10 2023

%H Robert Israel, <a href="/A357631/b357631.txt">Table of n, a(n) for n = 1..10000</a>

%e The terms together with their prime indices begin:

%e 1: {}

%e 12: {1,1,2}

%e 16: {1,1,1,1}

%e 30: {1,2,3}

%e 63: {2,2,4}

%e 70: {1,3,4}

%e 81: {2,2,2,2}

%e 108: {1,1,2,2,2}

%e 154: {1,4,5}

%e 165: {2,3,5}

%e 192: {1,1,1,1,1,1,2}

%e 256: {1,1,1,1,1,1,1,1}

%e 273: {2,4,6}

%e 286: {1,5,6}

%e 300: {1,1,2,3,3}

%p f:= proc(n) local F,Q,i;

%p F:= sort(ifactors(n)[2],(s,t) -> s[1]<t[1]);

%p F:= map(t -> numtheory:-pi(t[1])$t[2],F);

%p Q:= [-1,1,1,-1];

%p add(Q[i mod 4 + 1]*F[i],i=1..nops(F))

%p end proc:

%p select(f=0, [$1..10000]); # _Robert Israel_, Oct 10 2023

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];

%t Select[Range[1000],halfats[primeMS[#]]==0&]

%Y The version for original alternating sum is A000290.

%Y The version for standard compositions is A357625, reverse A357626.

%Y Positions of zeros in A357629, reverse A357633.

%Y The skew-alternating form is A357632, reverse A357636.

%Y The reverse version is A357635.

%Y These partitions are counted by A357639, skew A357640.

%Y A056239 adds up prime indices, row sums of A112798.

%Y A316524 gives alternating sum of prime indices, reverse A344616.

%Y A351005 = alternately equal and unequal partitions, compositions A357643.

%Y A351006 = alternately unequal and equal partitions, compositions A357644.

%Y A357641 counts comps w/ half-alt sum 0, even A357642.

%Y Cf. A003963, A053251, A055932, A357189, A357485-A357488, A357621-A357624, A357630, A357634, A357637.

%K nonn

%O 1,2

%A _Gus Wiseman_, Oct 09 2022