login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half area of the convex hull of {(x,y) | x,y integers and x^2 + y^2 <= n^2}.
3

%I #24 Oct 23 2022 20:46:34

%S 0,1,4,12,21,37,52,69,93,120,152,181,212,258,297,345,388,444,495,552,

%T 616,673,749,814,881,965,1046,1132,1211,1301,1396,1483,1589,1686,1800,

%U 1907,2006,2128,2235,2371,2490,2607,2741,2872,3020,3155,3293,3442,3581,3739

%N Half area of the convex hull of {(x,y) | x,y integers and x^2 + y^2 <= n^2}.

%C a(n) is odd if there is an edge connecting two corners (x,y) and (y,x), x > y > 0, such that x-y is odd. Otherwise, a(n) is even. a(n)/n^2 is not monotonous but tends to Pi/2. Apparently, a recurrence or another formula for a(n) does not exist. The convex hull has four symmetry axes: x=0, y=0, y=x, y=-x. Therefore it is sufficient to find the least area of a quarter polygon (multiplied by 2). The half area is an integer because the area of any convex polygon whose corner coordinates are integers is a multiple of 1/2.

%H Gerhard Kirchner, <a href="/A357575/a357575.pdf">Examples for n <= 13</a>

%e n=2: 1+3 square units -> a(2) = 4.

%e ^

%e / | \ 1

%e /___|___\

%e / | | | \ 3

%e /___|___|___|___\

%o (Maxima)

%o block(nmax: 60, a: makelist(0,i,1,nmax),

%o for n from 1 thru nmax do

%o (x0:0, y0:n, xa:0, ya:n, m1:0, m0:2, ar:0,

%o while xa<ya do (y:y0,

%o while m1<=m0 and xa<ya do

%o (y:y-1, x1: sqrt(n^2-y^2), m1: (y0-y)/(x1-x0),

%o if m1<=m0 then (x:floor(x1), m: (y0-y)/(x-x0),

%o if m<m0 then (m0:m, xa:x, ya:y))),

%o dar:xa*y0-ya*x0,

%o if xa<=ya then (x0:xa, y0:ya, m0:2, ar:ar+2*dar) else ar:ar+dar),

%o a[n]: ar), a);

%o (Python)

%o from math import isqrt

%o from sympy import convex_hull

%o def A357575(n): return int(2*convex_hull(*[(n,0),(0, 0)]+[(x, isqrt((n-x)*(n+x))) for x in range(n)]).area) if n else 0 # _Chai Wah Wu_, Oct 23 2022

%Y Cf. A357576, A292276.

%K nonn

%O 0,3

%A _Gerhard Kirchner_, Oct 04 2022