Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 06 2022 04:30:54
%S 2,-1,-1,-1,-1,2,-1,6,6,8,-1,10,-1,12,12,14,-1,16,-1,18,18,20,-1,22,
%T 20,24,24,26,-1,28,-1,30,30,32,30,34,-1,36,36,38,-1,40,-1,42,42,44,-1,
%U 3,42,3,48,2,-1,52,50,54,54,56,-1,58,-1,60,2,62,60,7,-1,66,66,68,-1,70,-1,72,7
%N a(n) is the least integer b such that the digit representation of n in base b is equal to the digit representation in base b of the initial terms of the sets of divisors of n in increasing order, or -1 if no such b exists.
%C It appears that a(n) != -1 iff n in A056653.
%H Michel Marcus, <a href="/A357481/b357481.txt">Table of n, a(n) for n = 1..10000</a>
%H Peter Munn, <a href="/plot2a?name1=A000027&name2=A357481&tform1=asinh&tform2=asinh&shift=0&radiop1=xy&drawpoints=true">Scatterplot with asinh-scale axes</a>. (Axis labeled "A000027(n)" is n.)
%e In base 10, 12 is a term of A175252, and there is no other lesser base for which 12 works, so a(12) = 10.
%o (PARI) isok(k, b) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, b)); if (fromdigits(s, b)==k, return(1)); if (fromdigits(s, b)> k, return(0)));
%o a(n) = if (n==1, 2, for (b=2, n-1, if (isok(n, b), return(b))); return(-1););
%o (Python)
%o from sympy import divisors
%o from sympy.ntheory import digits
%o def ok(n, b):
%o target, s = digits(n, b)[1:], []
%o if target[0] != 1: return False
%o for d in divisors(n):
%o s += digits(d, b)[1:]
%o if len(s) >= len(target): return s == target
%o def a(n):
%o if n == 1: return 2
%o for b in range(2, n):
%o if ok(n, b): return b
%o return -1
%o print([a(n) for n in range(1, 76)]) # _Michael S. Branicky_, Oct 05 2022
%Y Cf. A056653, A175252, A357428, A357429.
%K sign,base
%O 1,1
%A _Michel Marcus_, Sep 30 2022