%I #34 Oct 19 2022 13:40:21
%S 3,2,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,6,6,1,1,1,1,1,1,1,1,1,1,4,4,4,5,
%T 5,5,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,8,8,
%U 4,4,4,4,4,4,4,4,7,7,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3
%N a(n) is the smallest k such that the square root of k*n rounds to a prime.
%H Michael De Vlieger, <a href="/A357477/b357477.txt">Table of n, a(n) for n = 1..10000</a>
%e a(19) = 6 because sqrt(19*6) rounded to the nearest integer is 11, which is prime. Any multiple smaller than this only rounds to a composite number.
%t Array[(k = 1; While[! PrimeQ[Round@ Sqrt[k #]], k++]; k) &, 105] (* _Michael De Vlieger_, Oct 19 2022 *)
%o (PARI) a(n) = my(k=1); while (!isprime(round(sqrt(k*n))), k++); k; \\ _Michel Marcus_, Oct 18 2022
%o (Python)
%o from math import isqrt
%o from itertools import count
%o from sympy import isprime
%o def A357477(n): return next(filter(lambda k:isprime((m:=isqrt(k*n))+ int((k*n-m*(m+1)<<2)>=1)),count(1))) # _Chai Wah Wu_, Oct 19 2022
%Y Cf. A357675, A357676.
%K nonn,easy
%O 1,1
%A _Jake M. Gotlieb_, Sep 30 2022