login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357406
Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n * x^(2*n+2) * (1 - x^n)^(n+1).
2
1, 0, -1, 0, 3, -8, 9, 0, -10, 0, 24, -24, 0, 0, 15, 0, 9, -80, 90, 0, -43, 0, 57, -80, 13, 0, 175, -200, 15, -120, 313, 0, -346, 0, 450, -168, 19, -744, 830, 0, 21, -224, -287, 0, 405, 0, 1014, -1968, 25, 0, 2813, -784, -2448, -360, 1575, 0, 2765, -3520, 450, -440, 31
OFFSET
0,5
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n * x^(2*n+2) * (1 - x^n)^(n+1),
(2) A(x) = -Sum_{n=-oo..+oo, n<>0} n * (-1)^n * x^((n-1)*(n-2)) / (1 - x^n)^(n-1).
EXAMPLE
G.f.: A(x) = 1 - x^2 + 3*x^4 - 8*x^5 + 9*x^6 - 10*x^8 + 24*x^10 - 24*x^11 + 15*x^14 + 9*x^16 - 80*x^17 + 90*x^18 - 43*x^20 + 57*x^22 - 80*x^23 + 13*x^24 + ...
Related series.
x/A(x) = x + x^3 - 2*x^5 + 8*x^6 - 14*x^7 + 16*x^8 - 7*x^9 - 24*x^10 + 103*x^11 - 232*x^12 + 334*x^13 - 256*x^14 - 211*x^15 + 1400*x^16 + ... + A357401(n)*x^n + ...
PROG
(PARI) {a(n) = my(A = sum(m=-n\2-1, n\2+1, m * x^(2*m+2) * (1 - x^m +x*O(x^n) )^(m+1)) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A161432 A229380 A229372 * A021261 A245263 A016672
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 27 2022
STATUS
approved