login
E.g.f. satisfies A(x) = log(1 + x * exp(A(x))) * exp(3 * A(x)).
4

%I #16 Sep 10 2024 04:18:34

%S 0,1,7,119,3186,117204,5493672,313159146,21032534856,1626654909168,

%T 142381874412000,13915051276560048,1501957674420194736,

%U 177456652252068578544,22779601954164759020184,3156967397734735846493880,469790199951668305705905408

%N E.g.f. satisfies A(x) = log(1 + x * exp(A(x))) * exp(3 * A(x)).

%H Seiichi Manyama, <a href="/A357351/b357351.txt">Table of n, a(n) for n = 0..324</a>

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F a(n) = Sum_{k=1..n} (n+3*k)^(k-1) * Stirling1(n,k).

%F E.g.f.: Series_Reversion( exp(-x) * (exp(x * exp(-3*x)) - 1) ). - _Seiichi Manyama_, Sep 10 2024

%o (PARI) a(n) = sum(k=1, n, (n+3*k)^(k-1)*stirling(n, k, 1));

%Y Cf. A357349, A357350, A357423.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Sep 25 2022