login
E.g.f. satisfies A(x) = (exp(x * exp(A(x))) - 1) * exp(A(x)).
3

%I #16 Sep 09 2024 09:34:01

%S 0,1,5,52,849,18996,540986,18726247,763480675,35837071558,

%T 1903538106065,112880374866172,7392418912962210,529898419942327801,

%U 41266682731537698181,3469461853041348996044,313200848521114144611273,30215925892728362737156556

%N E.g.f. satisfies A(x) = (exp(x * exp(A(x))) - 1) * exp(A(x)).

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F a(n) = Sum_{k=1..n} (n+k)^(k-1) * Stirling2(n,k).

%F E.g.f.: Series_Reversion( exp(-x) * log(1 + x * exp(-x)) ). - _Seiichi Manyama_, Sep 09 2024

%o (PARI) a(n) = sum(k=1, n, (n+k)^(k-1)*stirling(n, k, 2));

%Y Cf. A052888, A357347, A357348, A357424.

%Y Cf. A048802, A349557.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Sep 25 2022