login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
16

%I #22 Jun 07 2023 03:38:12

%S 1,1,5,27,156,961,6145,40546,273784,1883468,13153544,93012247,

%T 664640794,4791939802,34816034143,254659426691,1873698891024,

%U 13858201221637,102975937795619,768385165594607,5755185884844403,43253819566052165,326093530416255178,2465456045342545908

%N a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).

%C Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.

%H Paul D. Hanna, <a href="/A357227/b357227.txt">Table of n, a(n) for n = 0..400</a>

%F Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.

%F (1) 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).

%F (2) 2*A(x) = Sum_{n=-oo..+oo} x^(2*n) * (2*A(x) - x^n)^(n-1).

%F (3) 1 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - 2*x^n*A(x))^(n+1).

%F (4) 2*A(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*x^n*A(x))^(n+1).

%e G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 156*x^4 + 961*x^5 + 6145*x^6 + 40546*x^7 + 273784*x^8 + 1883468*x^9 + 13153544*x^10 + 93012247*x^11 + 664640794*x^12 + ...

%e where

%e 1 = ... + x^(-3)/(2*A(x) - x^(-3))^4 + x^(-2)/(2*A(x) - x^(-2))^3 + x^(-1)/(2*A(x) - x^(-1))^2 + 1/(2*A(x) - 1) + x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...

%e SPECIFIC VALUES.

%e A(1/9) = 1.30108724398914093656591796643458817060949...

%e A(1/10) = 1.22176622612326449515553495048940456186175...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^(2*m) * (2*Ser(A) - x^m)^(m-1) )/(2*Ser(A)), #A-1)/2); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m^2)/(1 - 2*Ser(A)*x^m)^(m+1) ), #A-1)/2); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);

%o A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m*(m-1))/(1 - 2*Ser(A)*x^m)^(m+1) )/(2*Ser(A)), #A-1)/2); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A358961, A358962, A358963, A358964, A358965, A358937.

%Y Cf. A355868, A357232, A355865.

%Y Cf. A363312, A363313, A363314, A363315.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 17 2022