login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
3

%I #7 Sep 19 2022 11:08:34

%S 1,1,8,74,758,8412,98605,1201739,15075377,193374064,2524704727,

%T 33440460233,448246477551,6069174992443,82884604316537,

%U 1140361539606239,15791577929661603,219930850717175458,3078540089119391233,43287917046150591163,611156850554916771425

%N Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations.

%F (1) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

%F (2) -x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.

%F (3) x*A(x)^4 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity.

%F (4) -x*A(x)^5 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity.

%e G.f.: A(x) = 1 + x + 8*x^2 + 74*x^3 + 758*x^4 + 8412*x^5 + 98605*x^6 + 1201739*x^7 + 15075377*x^8 + 193374064*x^9 + 2524704727*x^10 + ...

%e where

%e x*A(x)^4 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...

%o (PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));

%o A[#A] = polcoeff( x*Ser(A)^4 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A355361, A357206, A357207, A357209.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 18 2022