login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357199
Primes p such that (5*p+2)/3 is the square of a prime.
1
2, 5, 29, 101, 173, 317, 821, 1109, 2693, 4133, 6869, 9677, 11261, 17957, 22349, 29837, 32573, 60293, 68141, 83477, 128621, 164117, 186149, 190181, 221069, 225461, 343829, 406397, 440669, 467813, 526781, 561053, 579773, 716789, 748613, 845381, 853949, 888653, 1131077, 1214957, 1326701, 1647389
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 29 is a term because (5*29+2)/3 = 49 = 7^2 where 29 and 7 are prime.
MAPLE
R:= NULL: count:= 0:
q:= 1:
while count < 100 do
q:= nextprime(q);
if member(q mod 5, {2, 3}) then
p := (3*q^2-2)/5;
if isprime(p) then
R:= R, p; count:= count+1
fi
fi
od:
R;
PROG
(PARI) isok(p) = if (isprime(p), my(x=(5*p+2)/3, q); issquare(x, &q) && isprime(q)); \\ Michel Marcus, Sep 25 2022
CROSSREFS
Sequence in context: A083472 A213996 A057794 * A257545 A073715 A104083
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Sep 18 2022
STATUS
approved