login
A357167
Numbers k such that k and k+2 are both odd numbers whose prime factors are all prime-indexed primes.
3
1, 3, 9, 15, 25, 31, 81, 83, 121, 123, 125, 153, 155, 177, 241, 275, 277, 295, 367, 459, 545, 561, 603, 615, 633, 737, 773, 991, 1003, 1023, 1087, 1199, 1201, 1203, 1215, 1375, 1383, 1395, 1409, 1411, 1413, 1445, 1681, 1845, 1851, 2025, 2075, 2099, 2125, 2319, 2417
OFFSET
1,2
COMMENTS
Numbers k such that both k and k+2 are in A076610.
Since 2 is not a prime-indexed prime, all the terms of A076610 are odd, so there are no 2 consecutive integers in A076610.
LINKS
EXAMPLE
3 is a term since 3 = prime(2) and 5 = prime(3) are both prime-indexed primes.
15 is a term since 15 = 3 * 5, 15 + 2 = 17, and 3 = prime(2), 5 = prime (3) and 17 = prime(7) are all prime-indexed primes.
MATHEMATICA
q[n_] := AllTrue[FactorInteger[n][[;; , 1]], PrimeQ[PrimePi[#]] &]; q[1] = True; Select[Range[1, 2500, 2], q[#] && q[# + 2] &]
PROG
(PARI) isokf(k) = my(f = factor(k)[, 1]); sum(i=1, #f, isprime(primepi(f[i]))) == #f; \\ A076610
isok(k) = (k % 2) && isokf(k) && isokf(k+2); \\ Michel Marcus, Sep 16 2022
CROSSREFS
Subsequences: A357168, A357169.
Sequence in context: A058972 A026222 A192720 * A099989 A209980 A085046
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 16 2022
STATUS
approved