login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357160
Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
7
1, 1, 2, 8, 24, 88, 313, 1187, 4549, 17898, 71324, 288365, 1177729, 4856051, 20178061, 84427850, 355375253, 1503849591, 6394015744, 27301536104, 117020066991, 503313598572, 2171633107742, 9396938664272, 40769489510945, 177313714453588, 772906669281227, 3376119803594888
OFFSET
0,3
COMMENTS
Compare to A356783.
Related identity: 0 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1).
Related identity: 0 = Sum_{n=-oo..+oo} x^(k*n) * (y - x^(n+1-k))^n, which holds for any positive integer k and real y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 1 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
(2) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+2))^n * A(x)^n ).
(3) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+2)*A(x))^n.
(4) -A(x)^3 = Sum_{n=-oo..+oo} x^(3*n+2) * (A(x) - x^(n-1))^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1)*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+2))^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 24*x^4 + 88*x^5 + 313*x^6 + 1187*x^7 + 4549*x^8 + 17898*x^9 + 71324*x^10 + ...
such that
1 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(1 - sum(n=-#A\3-2, #A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2022
STATUS
approved