login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n in the power series A(x) such that: 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n, starting with a(0) = -1.
1

%I #29 Oct 18 2022 11:38:51

%S -1,-2,-4,-8,-8,-6,40,132,400,504,76,-4960,-18528,-56998,-94176,

%T -58896,617216,2911128,9741760,19739472,21657312,-75073186,-483271024,

%U -1800924184,-4274295720,-6374947674,7150661892,81254492928,345397065128,937137978804,1717431001440

%N a(n) = coefficient of x^n in the power series A(x) such that: 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n, starting with a(0) = -1.

%C Related identity: 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1), which holds when 0 < |x| < 1.

%C Note that Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n is to be taken as the sum of two infinite series, P(x) + Q(x), where P(x) = Sum_{n=-oo..-1} n * x^n * (1 - x^n)^(n-1) * A(x)^n and Q(x) = Sum_{n=+1..+oo} n * x^n * (1 - x^n)^(n-1) * A(x)^n. The g.f. A(x) of this sequence satisfies the condition that P(x) + Q(x) = 0. The series Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n converges to zero when 0 < |x| < r where r < 1 is the radius of convergence of g.f. A(x). Upon reversing the sign of the index n, and so taking the same sum in reverse order from +oo to -oo, we obtain the equivalent series Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) / ((1 - x^n)^(n+1) * A(x)^n), the convergence of which is more clearly seen to hold when 0 < |x| < r < 1.

%H Paul D. Hanna, <a href="/A357159/b357159.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n, with a(0) = -1, satisfies the following relations.

%F (1) 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n)^(n-1) * A(x)^n.

%F (2) 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (1 - x^n/A(x))^(n-1).

%F (3) 0 = Sum_{n=-oo..+oo, n<>0} n * x^n * (A(x) - x^n)^(n-1).

%F (4) 0 = Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) / ( (1 - x^n)^(n+1) * A(x)^n ).

%F (5) 0 = Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) * A(x)^n / (A(x) - x^n)^(n+1).

%F (6) 0 = Sum_{n=-oo..+oo, n<>0} (-1)^n * n * x^(n^2) * A(x)^n / (1 - x^n*A(x))^(n+1).

%e G.f.: A(x) = -1 - 2*x - 4*x^2 - 8*x^3 - 8*x^4 - 6*x^5 + 40*x^6 + 132*x^7 + 400*x^8 + 504*x^9 + 76*x^10 - 4960*x^11 - 18528*x^12 - 56998*x^13 - 94176*x^14 - 58896*x^15 + 617216*x^16 + ...

%e such that

%e 0 = ... - 3*(x*A(x))^(-3)/(1 - x^(-3))^4 - 2*(x*A(x))^(-2)/(1 - x^(-2))^3 - (x*A(x))^(-1)/(1 - x^(-1))^2 + 0 + x*A(x) + 2*(x*A(x))^2*(1 - x^2) + 3*(x*A(x))^3*(1 - x^3)^2 + 4*(x*A(x))^4*(1 - x^4)^3 + 5*(x*A(x))^5*(1 - x^5)^4 + ... + n*(x*A(x))^n*(1 - x^n)^(n-1) + ...

%e SPECIFIC VALUES.

%e A(1/4) = -1.8892616570712410815999763792198265088...

%e A(1/5) = -1.6334109911560757412636074394753603214...

%e A(1/6) = -1.4868349923582400870800926746579742411...

%e We can illustrate the sum in the definition at x = 1/4.

%e The sum

%e 0 = Sum_{n=-oo..+oo, n<>0} n * 1/4^n * (1 - 1/4^n)^(n-1) * A(1/4)^n

%e simplifies somewhat to

%e 0 = Sum_{n=-oo..+oo, n<>0} n * (4^n - 1)^(n-1) * A(1/4)^n / 4^(n^2),

%e which can be split up into parts P and Q.

%e Let P denote the sum from -oo to -1, which can be written as

%e P = Sum_{n>1} (-1)^n * n * 4^n / ((4^n - 1)^(n+1) * A(1/4)^n),

%e and let Q denote the sum from +1 to +oo:

%e Q = Sum_{n>1} n * (4^n - 1)^(n-1) * A(1/4)^n / 4^(n^2).

%e Substituting A(1/4) = -1.8892616570712410815999763792198265088... yields

%e P = 0.237905890404564510234837963872429856... and

%e Q = -0.237905890404564510234837963872429856...

%e so that P + Q = 0.

%o (PARI) {a(n) = my(A=[-1]); for(i=1,n, A=concat(A,0);

%o A[#A] = -polcoeff( sum(n=-#A,#A, if(n==0,0, n * x^n * (1 - x^n +x*O(x^#A) )^(n-1) * Ser(A)^n )),#A)/2 );A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A291937, A357158.

%K sign

%O 0,2

%A _Paul D. Hanna_, Oct 03 2022