The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357155 Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. 8
 1, 1, 7, 71, 832, 10660, 144684, 2043814, 29736131, 442562703, 6706068107, 103109044005, 1604621459651, 25226987525340, 400062373648799, 6392118111706099, 102801779216363982, 1662854341556813731, 27034758217304814579, 441537893821034707720, 7240848432876171585800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 FORMULA G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations. (1) A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. (2) x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ). (3) -x*A(x)^7 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n. (4) -A(x)^8 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n. (5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n. (6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n. EXAMPLE G.f.: A(x) = 1 + x + 7*x^2 + 71*x^3 + 832*x^4 + 10660*x^5 + 144684*x^6 + 2043814*x^7 + 29736131*x^8 + 442562703*x^9 + 6706068107*x^10 + 103109044005*x^11 + 1604621459651*x^12 + ... such that A(x)^5 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ... also -A(x)^8 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ... PROG (PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0); A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A356783, A357151, A357152, A357153, A357154. Sequence in context: A260033 A067307 A334135 * A268702 A363009 A052390 Adjacent sequences: A357152 A357153 A357154 * A357156 A357157 A357158 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 16 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 12:50 EDT 2024. Contains 375829 sequences. (Running on oeis4.)