|
|
A357155
|
|
Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
|
|
8
|
|
|
1, 1, 7, 71, 832, 10660, 144684, 2043814, 29736131, 442562703, 6706068107, 103109044005, 1604621459651, 25226987525340, 400062373648799, 6392118111706099, 102801779216363982, 1662854341556813731, 27034758217304814579, 441537893821034707720, 7240848432876171585800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).
|
|
LINKS
|
|
|
FORMULA
|
G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^7 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^8 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.
|
|
EXAMPLE
|
G.f.: A(x) = 1 + x + 7*x^2 + 71*x^3 + 832*x^4 + 10660*x^5 + 144684*x^6 + 2043814*x^7 + 29736131*x^8 + 442562703*x^9 + 6706068107*x^10 + 103109044005*x^11 + 1604621459651*x^12 + ...
such that
A(x)^5 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^8 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
|
|
PROG
|
(PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|