%I #7 Sep 27 2022 09:00:12
%S 1,2,1,1,1,1,2,1,1,2,1,1,1,3,1,1,1,2,2,2,1,1,1,1,1,1,2,1,1,1,2,1,1,1,
%T 1,2,1,3,1,1,1,2,1,1,1,1,2,1,1,2,2,1,2,1,2,2,1,1,1,1,3,1,1,1,1,1,2,2,
%U 1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1
%N Take the k-th composition in standard order for each part k of the n-th composition in standard order; then concatenate.
%C The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a>
%F Row n is the A357134(n)-th composition in standard order.
%e Triangle begins:
%e 0:
%e 1: 1
%e 2: 2
%e 3: 1 1
%e 4: 1 1
%e 5: 2 1
%e 6: 1 2
%e 7: 1 1 1
%e 8: 3
%e 9: 1 1 1
%e 10: 2 2
%e 11: 2 1 1
%e 12: 1 1 1
%e 13: 1 2 1
%e 14: 1 1 2
%e 15: 1 1 1 1
%t stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
%t Join@@Table[Join@@stc/@stc[n],{n,0,30}]
%Y See link for sequences related to standard compositions.
%Y Row n is the A357134(n)-th composition in standard order.
%Y The version for Heinz numbers of partitions is A357139, cf. A003963.
%Y Row sums are A357186, differences A357187.
%Y Cf. A000120, A001511, A029931, A048896, A058891, A070939, A096111, A329395, A333766, A335404, A357137.
%K nonn
%O 0,2
%A _Gus Wiseman_, Sep 26 2022