login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies log(A(x)) = (exp(x) - 1)^2 * A(x).
2

%I #33 Mar 04 2024 14:35:32

%S 1,0,2,6,50,390,4322,53046,782210,12920550,241747682,5000171286,

%T 113961184130,2830240421190,76196913418082,2209152734071926,

%U 68655746019566210,2276606079902438310,80244521295497399522,2995966456305973559766,118119901491333724203650

%N E.g.f. satisfies log(A(x)) = (exp(x) - 1)^2 * A(x).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (k+1)^(k-1) * Stirling2(n,2*k)/k!.

%F E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (exp(x) - 1)^(2*k) / k!.

%F E.g.f.: A(x) = exp( -LambertW(-(exp(x) - 1)^2) ).

%F E.g.f.: A(x) = -LambertW(-(exp(x) - 1)^2)/(exp(x) - 1)^2.

%F a(n) ~ sqrt(1 + exp(1/2)) * 2^n * n^(n-1) / (exp(n-1) * (2*log(1 + exp(1/2)) - 1)^(n - 1/2)). - _Vaclav Kotesovec_, Sep 27 2023

%t nmax = 20; A[_] = 1;

%t Do[A[x_] = Exp[(-1 + Exp[x])^2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];

%t CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *)

%o (PARI) a(n) = sum(k=0, n\2, (2*k)!*(k+1)^(k-1)*stirling(n, 2*k, 2)/k!);

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(exp(x)-1)^(2*k)/k!)))

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-(exp(x)-1)^2))))

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-lambertw(-(exp(x)-1)^2)/(exp(x)-1)^2))

%Y Cf. A052880, A357010.

%Y Cf. A052859, A357024.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Sep 09 2022