login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multiset partitions into gapless blocks of a size-n multiset covering an initial interval with weakly decreasing multiplicities.
6

%I #7 Sep 10 2022 22:02:02

%S 1,1,4,11,37,101,328,909,2801

%N Number of multiset partitions into gapless blocks of a size-n multiset covering an initial interval with weakly decreasing multiplicities.

%C A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.

%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a>

%e The a(1) = 1 through a(3) = 11 multiset partitions:

%e {{1}} {{1,1}} {{1,1,1}}

%e {{1,2}} {{1,1,2}}

%e {{1},{1}} {{1,2,3}}

%e {{1},{2}} {{1},{1,1}}

%e {{1},{1,2}}

%e {{1},{2,3}}

%e {{2},{1,1}}

%e {{3},{1,2}}

%e {{1},{1},{1}}

%e {{1},{1},{2}}

%e {{1},{2},{3}}

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];

%t nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];

%t Table[Length[Select[Join@@mps/@strnorm[n],And@@nogapQ/@#&]],{n,0,5}]

%Y A000041 counts integer partitions, strict A000009.

%Y A000670 counts patterns, ranked by A333217, necklace A019536.

%Y A011782 counts multisets covering an initial interval.

%Y Gapless multisets are counted by A034296, ranked by A073491.

%Y Other conditions: A035310, A063834, A330783, A356934, A356938, A356954.

%Y Other types: A356233, A356941, A356942, A356944.

%Y Cf. A055887, A072233, A270995, A304969, A349050, A349055.

%K nonn,more

%O 0,3

%A _Gus Wiseman_, Sep 09 2022