login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the product of the first n numbers not divisible by 5.
5

%I #17 Nov 03 2024 16:13:42

%S 1,1,2,6,24,144,1008,8064,72576,798336,9580032,124540416,1743565824,

%T 27897053184,474249904128,8536498274304,162193467211776,

%U 3406062811447296,74933381851840512,1723467782592331776,41363226782215962624,1075443896337615028224,29036985201115605762048

%N a(n) is the product of the first n numbers not divisible by 5.

%C Unlike the factorial number n!, a(n) does not have trailing zeros.

%H Harvey P. Dale, <a href="/A356858/b356858.txt">Table of n, a(n) for n = 0..434</a>

%F a(n) = Product_{k=1..n} A047201(k).

%F a(n) = A047201(n)!/(floor(A047201(n)/5)!*5^floor(A047201(n)/5)) for n > 0.

%t Table[Product[Floor[(5k-1)/4], {k,n}], {n,0,22}] (* or *)

%t Join[{1}, Table[Floor[(5n-1)/4]!/(Floor[Floor[(5n-1)/4]/5]!*5^Floor[Floor[(5n-1)/4]/5]), {n,22}]]

%t Join[{1},FoldList[Times,Table[If[Mod[n,5]==0,Nothing,n],{n,30}]]] (* _Harvey P. Dale_, Nov 03 2024 *)

%o (Python)

%o from math import prod

%o def a(n): return prod((5*k-1)//4 for k in range(1, n+1))

%o print([a(n) for n in range(23)]) # _Michael S. Branicky_, Sep 01 2022

%Y Cf. A000142, A000351, A002266, A047201.

%Y Cf. A356859 (number of zero digits), A356860 (number of digits), A356861 (number of nonzero digits).

%K nonn

%O 0,3

%A _Stefano Spezia_, Sep 01 2022