%I #14 Aug 28 2022 04:24:55
%S 1,0,2,3,92,510,15114,174300,5558944,103712616,3672530280,96397602840,
%T 3830335035240,129817630491120,5796134828193696,239906921239210680,
%U 11996259216566469120,584024600798956215360,32523678395272329425856
%N E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^2).
%F a(n) = n! * Sum_{k=0..floor(n/2)} (n+k+1)^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
%o (PARI) a(n) = n!*sum(k=0, n\2, (n+k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
%Y Cf. A184949, A349559, A356787.
%Y Cf. A355766.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Aug 27 2022