login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A356782 Expansion of g.f. A(x) satisfies A(x) = x * Product_{n>=0} (1 + 2*A(x)^(2^n)). 6

%I #22 May 30 2024 06:59:30

%S 1,2,6,24,106,496,2428,12288,63762,337392,1813628,9876096,54365876,

%T 302037408,1691327224,9536234496,54093070626,308474110000,

%U 1767481876540,10170367611008,58746459504884,340513035730944,1979964903739992,11546094361266176,67509252360531940

%N Expansion of g.f. A(x) satisfies A(x) = x * Product_{n>=0} (1 + 2*A(x)^(2^n)).

%C From _Paul D. Hanna_, May 29 2024: (Start)

%C Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):

%C (1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),

%C (2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),

%C (3) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0. (End)

%H Paul D. Hanna, <a href="/A356782/b356782.txt">Table of n, a(n) for n = 1..600</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:

%F (1) A(x)^2 = A( x*A(x) + 2*x*A(x)^2 ).

%F (2) A(x)^4 = A( x*A(x)^3*(1 + 2*A(x))*(1 + 2*A(x)^2) ).

%F (3) A(x) = x * Product_{n>=0} (1 + 2*A(x)^(2^n)).

%F (4) A(x) = x * Sum_{n>=0} 2^A000120(n) * A(x)^n, where A000120(n) = number of 1's in binary expansion of n.

%F (5) A(x) = x * Sum_{n>=0} A001316(n) * A(x)^n, where A001316(n) = number of odd entries in row n of Pascal's triangle.

%F (6) A(x) = Series_Reversion( x / Product_{n>=0} (1 + 2*x^(2^n)) ).

%F (7) A(x)^(2^n) = A( x*A(x)^(2^n-1)*Product_{k=0..n-1} (1 + 2*A(x)^(2^k)) ) for n > 0. - _Paul D. Hanna_, May 29 2024

%F a(n) ~ c * d^n / n^(3/2), where d = 6.21914802593104186425760427502624741814921... and c = 0.11969150889542130656096151211011193088986347... - _Vaclav Kotesovec_, Apr 05 2024

%F The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 2^(n+1) * A(r)^(2^n) / (1 + 2*A(r)^(2^n)) and r = A(r) / Product_{n>=0} (1 + 2*A(r)^(2^n)), where r = 0.160793728631389877... = 1/d (d is given above) and A(r) = 0.368704226036154413721793821323276205873691236089885... - _Paul D. Hanna_, May 04 2024

%e G.f.: A(x) = x + 2*x^2 + 6*x^3 + 24*x^4 + 106*x^5 + 496*x^6 + 2428*x^7 + 12288*x^8 + 63762*x^9 + 337392*x^10 + 1813628*x^11 + 9876096*x^12 + ...

%e such that

%e A(x) = x * (1 + 2*A(x)) * (1 + 2*A(x)^2) * (1 + 2*A(x)^4) * (1 + 2*A(x)^8) * (1 + 2*A(x)^16) * ... * (1 + 2*A(x)^(2^n)) * ...

%e which is equivalent to

%e A(x) = x * (1 + 2*A(x) + 2*A(x)^2 + 4*A(x)^3 + 2*A(x)^4 + 4*A(x)^5 + 4*A(x)^6 + 8*A(x)^7 + 2*A(x)^8 + 4*A(x)^9 + 4*A(x)^10 + 8*A(x)^11 + 4*A(x)^12 + 8*A(x)^13 + 8*A(x)^14 + 16*A(x)^15 + ... + 2^A000120(n)*A(x)^n + ...).

%e Also, g.f. A(x) satisfies

%e A(x)^2 = A( x*A(x) + 2*x*A(x)^2 )

%e where

%e A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 72*x^5 + 344*x^6 + 1704*x^7 + 8688*x^8 + 45328*x^9 + 240856*x^10 + 1298984*x^11 + 7092544*x^12 + ...

%o (PARI) {a(n) = my(A = serreverse( x/prod(k=0,#binary(n),1 + 2*x^(2^k) +x*O(x^n)) ));

%o polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A372534, A000120, A001316.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 01 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 22:05 EDT 2024. Contains 375910 sequences. (Running on oeis4.)