%I #30 Jun 10 2024 00:17:56
%S 0,6,168,1404,6720,23250,65016,156408,336384,663390,1221000,2124276,
%T 3526848,5628714,8684760,13014000,19009536,27149238,38007144,52265580,
%U 70728000,94332546,124166328,161480424,207705600,264468750,333610056,417200868,517562304
%N a(n) = (n^2+n+1)*(n^2+n)*n^2.
%C Numer of ordered 3-arcs in the projective plane of order 3.
%H Kaplan, Nathan; Kimport, Susie; Lawrence, Rachel; Peilen, Luke; Weinreich, Max <a href="https://doi.org/10.1007/s00022-017-0391-1">Counting arcs in projective planes via Glynn’s algorithm</a>, J. Geom. 108, No. 3, 1013-1029 (2017), Th. 1.4 C_3.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = n^2*A169938(n).
%F G.f.: -6*x*(1+21*x+59*x^2+35*x^3+4*x^4)/(x-1)^7.
%F 6 | a(n).
%t Table[(n^2+n+1)(n^2+n)n^2,{n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,6,168,1404,6720,23250,65016},30] (* _Harvey P. Dale_, Dec 25 2023 *)
%o (Python)
%o def A356768(n): return n**3*(n*(n*(n + 2) + 2) + 1) # _Chai Wah Wu_, Aug 29 2022
%Y Cf. A169938 (2-arcs).
%K nonn,easy
%O 0,2
%A _R. J. Mathar_, Aug 29 2022