%I #10 Sep 01 2022 09:33:46
%S 1,6,12,15,18,24,30,35,36,45,48,54,60,72,75,77,90,96,105,108,120,135,
%T 143,144,150,162,175,180,192,210,216,221,225,240,245,270,288,300,315,
%U 323,324,360,375,384,385,405,420,432,437,450,462,480,486,525,539,540
%N Heinz numbers of integer partitions with no neighborless parts.
%C First differs from A066312 in having 1 and lacking 462.
%C First differs from A104210 in having 1 and lacking 42.
%C A part x is neighborless iff neither x - 1 nor x + 1 are parts.
%C The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e The terms together with their prime indices begin:
%e 1: {}
%e 6: {1,2}
%e 12: {1,1,2}
%e 15: {2,3}
%e 18: {1,2,2}
%e 24: {1,1,1,2}
%e 30: {1,2,3}
%e 35: {3,4}
%e 36: {1,1,2,2}
%e 45: {2,2,3}
%e 48: {1,1,1,1,2}
%e 54: {1,2,2,2}
%e 60: {1,1,2,3}
%e 72: {1,1,1,2,2}
%e 75: {2,3,3}
%e 77: {4,5}
%e 90: {1,2,2,3}
%e 96: {1,1,1,1,1,2}
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[100],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]
%Y These partitions are counted by A355394.
%Y The singleton case is the complement of A356237.
%Y The singleton case is counted by A355393, complement A356235.
%Y The strict complement is A356606, counted by A356607.
%Y The complement is A356734, counted by A356236.
%Y A000041 counts integer partitions, strict A000009.
%Y A001221 counts distinct prime factors, sum A001414.
%Y A003963 multiplies together the prime indices of n.
%Y A007690 counts partitions with no singletons, complement A183558.
%Y A056239 adds up prime indices, row sums of A112798, lengths A001222.
%Y A073491 lists numbers with gapless prime indices, complement A073492.
%Y Cf. A066312, A286470, A287170 (firsts A066205), A328171, A328187, A328221, A328335, A356231, A356234.
%K nonn
%O 1,2
%A _Gus Wiseman_, Aug 31 2022