Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 21 2022 06:15:28
%S 0,1,2,3,1,4,2,5,3,6,4,2,7,5,3,8,6,4,9,7,5,3,10,8,6,4,11,9,7,5,12,10,
%T 8,6,4,13,11,9,7,5,14,12,10,8,6,15,13,11,9,7,5,16,14,12,10,8,6,17,15,
%U 13,11,9,7,18,16,14,12,10,8,6,19,17,15,13,11,9,7
%N After n iterations of the "Square Multiscale" substitution, the largest tiles have side length 3^t / 5^f; a(n) = f (A356624 gives corresponding t's).
%C See A329919 for further details about the "Square Multiscale" substitution.
%H Rémy Sigrist, <a href="/A356625/b356625.txt">Table of n, a(n) for n = 0..10000</a>
%H Yotam Smilansky and Yaar Solomon, <a href="https://arxiv.org/abs/2003.11735">Multiscale Substitution Tilings</a>, arXiv:2003.11735 [math.DS], 2020.
%F 5^a(n) >= 3^A356624(n).
%e The first terms, alongside the corresponding side lengths, are:
%e n a(n) Side length
%e -- ---- -----------
%e 0 0 1
%e 1 1 3/5
%e 2 2 9/25
%e 3 3 27/125
%e 4 1 1/5
%e 5 4 81/625
%e 6 2 3/25
%e 7 5 243/3125
%e 8 3 9/125
%e 9 6 729/15625
%e 10 4 27/625
%o (PARI) { sc = [1]; for (n=0, 76, s = vecmax(sc); print1 (-valuation(s,5)", "); sc = setunion(setminus(sc,[s]), Set([3*s/5, s/5]))) }
%Y Cf. A022337, A329919, A354535, A356624.
%K nonn
%O 0,3
%A _Rémy Sigrist_, Aug 17 2022