%I #13 Aug 21 2022 06:15:28
%S 0,1,2,3,1,4,2,5,3,6,4,2,7,5,3,8,6,4,9,7,5,3,10,8,6,4,11,9,7,5,12,10,
%T 8,6,4,13,11,9,7,5,14,12,10,8,6,15,13,11,9,7,5,16,14,12,10,8,6,17,15,
%U 13,11,9,7,18,16,14,12,10,8,6,19,17,15,13,11,9,7
%N After n iterations of the "Square Multiscale" substitution, the largest tiles have side length 3^t / 5^f; a(n) = f (A356624 gives corresponding t's).
%C See A329919 for further details about the "Square Multiscale" substitution.
%H Rémy Sigrist, <a href="/A356625/b356625.txt">Table of n, a(n) for n = 0..10000</a>
%H Yotam Smilansky and Yaar Solomon, <a href="https://arxiv.org/abs/2003.11735">Multiscale Substitution Tilings</a>, arXiv:2003.11735 [math.DS], 2020.
%F 5^a(n) >= 3^A356624(n).
%e The first terms, alongside the corresponding side lengths, are:
%e n a(n) Side length
%e -- ---- -----------
%e 0 0 1
%e 1 1 3/5
%e 2 2 9/25
%e 3 3 27/125
%e 4 1 1/5
%e 5 4 81/625
%e 6 2 3/25
%e 7 5 243/3125
%e 8 3 9/125
%e 9 6 729/15625
%e 10 4 27/625
%o (PARI) { sc = [1]; for (n=0, 76, s = vecmax(sc); print1 (-valuation(s,5)", "); sc = setunion(setminus(sc,[s]), Set([3*s/5, s/5]))) }
%Y Cf. A022337, A329919, A354535, A356624.
%K nonn
%O 0,3
%A _Rémy Sigrist_, Aug 17 2022