login
Number of SAWs crossing a triangular domain of the hexagonal lattice and including the top vertex.
1

%I #6 Aug 16 2022 05:15:25

%S 1,3,18,210,4716,203130,16781528,2661898722,811337884328,

%T 475395297020430,535618774376758222,1160567857061063474508,

%U 4836675324919658534327348,38772333263059858336182467950,597894854584620490267288203881970,17736956492510173648327596231133813426

%N Number of SAWs crossing a triangular domain of the hexagonal lattice and including the top vertex.

%H Anthony J. Guttmann, <a href="/A356614/b356614.txt">Table of n, a(n) for n = 1..26</a>

%H Anthony J. Guttmann and Iwan Jensen, <a href="https://arxiv.org/abs/2208.06744">Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices</a>, arXiv:2208.06744 [math-ph], Aug 13 2022, Table D7.

%Y Cf. A001006, A002026, A007764, A116485.

%K nonn

%O 1,2

%A _Vaclav Kotesovec_, following a suggestion from _Anthony Guttmann_, Aug 16 2022