login
Number of SAWs crossing a triangular domain of the hexagonal lattice.
1

%I #6 Aug 16 2022 05:15:36

%S 2,7,44,515,11500,493704,40751496,6463642330,1970190022696,

%T 1154437344815284,1300686960810345198,2818300749120970598426,

%U 11745284697899678209887246,94153940687296424300453605522,1451915619132744566900848537333082,43072062058620235613855525243039798546

%N Number of SAWs crossing a triangular domain of the hexagonal lattice.

%H Anthony J. Guttmann, <a href="/A356613/b356613.txt">Table of n, a(n) for n = 1..27</a>

%H Anthony J. Guttmann and Iwan Jensen, <a href="https://arxiv.org/abs/2208.06744">Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices</a>, arXiv:2208.06744 [math-ph], Aug 13 2022, Table D6.

%Y Cf. A001006, A002026, A007764, A116485.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, following a suggestion from _Anthony Guttmann_, Aug 16 2022