%I #19 Dec 10 2023 11:10:48
%S 1,2,1,6,3,1,12,3,4,1,20,30,20,5,1,30,30,10,15,6,1,42,35,70,105,14,7,
%T 1,56,7,280,35,56,7,8,1,72,252,56,630,504,28,72,9,1,90,180,105,630,
%U 126,420,45,45,10,1,110,495,33,1155,1386,1155,165,99,110,11,1
%N Triangle read by rows. T(n, k) = denominator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k), for n >= 1, and T(0, 0) = 1.
%H Grzegorz RzÄ…dkowski, <a href="https://doi.org/10.1142/S1402925110000635">Bernoulli numbers and solitons - revisited</a>, Journal of Nonlinear Mathematical Physics, (2010) 17:1, 121-126.
%F R(n, k) = (-1)^(k - n + 1)*Eulerian(n, k)*Gamma(k + 2)*Gamma(n - k)/Gamma(n + 2) for 0 <= k < n, and T(n, n) = 0^n.
%F Bernoulli(n) = Sum_{k=0..n} R(n, k), where Bernoulli(1) = 1/2.
%F T(n, k) = denominator(R(n, k)).
%e Triangle T(n, k) starts:
%e [0] 1;
%e [1] 2, 1;
%e [2] 6, 3, 1;
%e [3] 12, 3, 4, 1;
%e [4] 20, 30, 20, 5, 1;
%e [5] 30, 30, 10, 15, 6, 1;
%e [6] 42, 35, 70, 105, 14, 7, 1;
%e [7] 56, 7, 280, 35, 56, 7, 8, 1;
%e [8] 72, 252, 56, 630, 504, 28, 72, 9, 1;
%e [9] 90, 180, 105, 630, 126, 420, 45, 45, 10, 1;
%e The Bernoulli numbers (with B(1) = 1/2) are the row sums of the fractions.
%e [0] 1 = 1;
%e [1] + 1/2 = 1/2;
%e [2] - 1/6 + 1/3 = 1/6;
%e [3] + 1/12 - 1/3 + 1/4 = 0;
%e [4] - 1/20 + 11/30 - 11/20 + 1/5 = -1/30;
%e [5] + 1/30 - 13/30 + 11/10 - 13/15 + 1/6 = 0;
%e [6] - 1/42 + 19/35 - 151/70 + 302/105 - 19/14 + 1/7 = 1/42;
%p E1 := proc(n, k) combinat:-eulerian1(n, k) end:
%p Trow := proc(n, z) if n = 0 then return 1 fi;
%p seq(denom(int(E1(n, k)*z^(k + 1)*(z - 1)^(n - k - 1), z=0..1)), k=0..n) end:
%p for n from 0 to 9 do Trow(n, z) od;
%t Unprotect[Power]; Power[0, 0] = 1;
%t E1[n_, k_] /; n == k = 0^k; E1[n_, k_] /; k < 0 || k > n = 0;
%t E1[n_, k_] := E1[n, k] = (k + 1)*E1[n - 1, k] + (n - k)*E1[n - 1, k - 1];
%t T[n_, k_] /; n == k = 0^k;
%t T[n_, k_] := (-1)^(k - n + 1)*E1[n, k]*Gamma[k + 2]*Gamma[n - k]/Gamma[n + 2];
%t Table[Denominator[T[n, k]], {n, 0, 8}, {k, 0, n}] // TableForm
%Y Cf. A356602 (numerator), A173018, A278075, A356545, A356547.
%K nonn,tabl,frac
%O 0,2
%A _Peter Luschny_, Aug 15 2022