login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest k such that primorial(k) > n^2.
0

%I #11 Aug 19 2022 10:09:02

%S 1,2,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

%T 5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6

%N Smallest k such that primorial(k) > n^2.

%t a[n_] := Module[{k = 1, prod = p = 2}, While[prod < n^2, p = NextPrime[p]; prod *= p; k++]; k]; Array[a, 100] (* _Amiram Eldar_, Aug 15 2022 *)

%o (Python)

%o from sympy import primorial

%o def a(n):

%o k = 1

%o while True:

%o if primorial(k) > n**2:

%o return(k)

%o k += 1

%o for n in range(1, 90):

%o print(f'{a(n)}, ', end='')

%Y Cf. A337769, A002110, A000290.

%K nonn

%O 1,2

%A _Christoph B. Kassir_, Aug 14 2022