login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{k=1..n} sigma_2(k)^2.
3

%I #13 Oct 09 2022 04:23:00

%S 1,26,126,567,1243,3743,6243,13468,21749,38649,53533,97633,126533,

%T 189033,256633,372914,457014,664039,795083,1093199,1343199,1715299,

%U 1996199,2718699,3142500,3865000,4537400,5639900,6348864,8038864,8964308,10827533,12315933,14418433

%N a(n) = Sum_{k=1..n} sigma_2(k)^2.

%C Partial sums of A356533.

%H Amiram Eldar, <a href="/A356535/b356535.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ 189 * zeta(3)^2 * zeta(5) * n^5 / Pi^6.

%t Table[Sum[DivisorSigma[2, k]^2, {k, 1, n}], {n, 1, 40}]

%o (PARI) a(n) = sum(k=1, n, sigma(k, 2)^2); \\ _Michel Marcus_, Aug 11 2022

%Y Cf. A001157, A057434, A061502, A072379, A356536.

%Y Cf. A127473, A035116, A072861, A356533, A356534.

%K nonn

%O 1,2

%A _Vaclav Kotesovec_, Aug 11 2022