login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356507
G.f.: Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n, where P(x) is the partition function (A000041).
1
1, 1, 1, 3, 5, 10, 18, 34, 60, 109, 192, 339, 591, 1027, 1768, 3032, 5165, 8755, 14766, 24786, 41417, 68912, 114193, 188478, 309939, 507821, 829197, 1349437, 2189105, 3540253, 5708422, 9177939, 14715345, 23530180, 37527544, 59700283, 94741244, 149991677
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n equals the following expressions involving P(x), the partition function (A000041).
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n.
(2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k>=1} (1 - x^k)^n.
(3) A(x) = Sum_{n>=0} x^n * P(x)^n * Product_{k=1..n} (1 - x^(2*k-1)*P(x))/(1 - x^(2*k)*P(x)).
(4) A(x) = 1/(1 - x*P(x)/(1 + x*(1-x)*P(x)/(1 - x^3*P(x)/(1 + x^2*(1-x^2)*P(x)/(1 - x^5*P(x)/(1 + x^3*(1-x^3)*P(x)/(1 - x^7*P(x)/(1 + x^4*(1-x^4)*P(x)/(1 - ...))))))))), a continued fraction.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 34*x^7 + 60*x^8 + 109*x^9 + 192*x^10 + 339*x^11 + 591*x^12 + 1027*x^13 + 1768*x^14 + ...
such that
A(x) = 1 + x*P(x) + x^3*P(x)^2 + x^6*P(x)^3 + x^10*P(x)^4 + x^15*P(x)^5 + x^21*P(x)^6 + ... + x^(n*(n+1)/2) * P(x)^n + ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, x^(m*(m+1)/2) / prod(k=1, n, (1 - x^k +x*O(x^n))^m))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A018165 A054179 A010049 * A094986 A154949 A318248
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 11 2022
STATUS
approved