login
Nonnegative numbers k such that the negaFibonacci representation of k (A215022(k)) is palindromic.
1

%I #7 Aug 07 2022 07:52:33

%S 0,1,3,6,8,11,14,21,24,35,40,50,55,58,66,82,90,108,118,126,144,147,

%T 176,189,205,234,247,273,286,296,325,338,364,377,380,401,443,464,511,

%U 527,548,590,611,658,684,705,752,762,783,825,846,893,919,940,987,990

%N Nonnegative numbers k such that the negaFibonacci representation of k (A215022(k)) is palindromic.

%C See A094202 and A356396 for similar sequences.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/NegaFibonacci_coding">NegaFibonacci coding</a>

%H <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>

%e The first terms are:

%e n a(n) A215022(a(n))

%e -- ---- -------------

%e 1 0 0

%e 2 1 1

%e 3 3 101

%e 4 6 10001

%e 5 8 10101

%e 6 11 1001001

%e 7 14 1000001

%e 8 21 1010101

%e 9 24 100101001

%e 10 35 100000001

%o (PARI) is(n) = { my (v=0, neg=0, pos=0, f); for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, while (n, if (f<0, neg-=f, pos-=f); if (neg > n || n > pos, v+=2^e; n-=f); f=fibonacci(-1-e--)); my (b=binary(v)); return (b==Vecrev(b)))) }

%Y Cf. A094202, A215022, A356396.

%K nonn,base

%O 1,3

%A _Rémy Sigrist_, Aug 05 2022