login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356394
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^k )^(1/(1-x)).
6
1, 1, 6, 51, 452, 5210, 68514, 1032906, 17352320, 323948376, 6594052680, 145585638000, 3461441121192, 88092914635128, 2388119359650192, 68667743686492440, 2086307088847714560, 66762608893508354880, 2243693428523140377024, 78982154604162553529664
OFFSET
0,3
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A356391(k) * binomial(n-1,k-1) * a(n-k).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1+x^k)^k, {k, 1, nmax}]^(1/(1-x)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 07 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+x^k)^k)^(1/(1-x))))
(PARI) a356391(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^2)/k);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356391(j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 05 2022
STATUS
approved