login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356375
Number of unlabeled centered trees with n nodes that have exactly one diametral path (up to direction of traversal).
0
0, 1, 0, 1, 0, 1, 2, 5, 9, 21, 44, 107, 247, 607, 1465, 3649, 9087, 23059, 58831, 151832, 394074, 1030492, 2708343, 7157735, 19002282, 50676945, 135691504, 364725995, 983775878, 2662271414, 7226368722, 19670528467, 53685042694, 146879757368, 402786655780, 1106968400532
OFFSET
0,7
COMMENTS
A diametral path in a tree is a path of maximum length. A diametral path in a centered tree is necessarily of even length. Its endpoints are leaves and its middle point is the center of the tree. A centered tree with exactly one diametral path of length 2m can be decomposed into a rooted tree of height at most m-1 along with exactly 2 rooted trees of height exactly m-1. It appears that almost all centered trees (A000676) have exactly one diametral path.
MATHEMATICA
nn = 35; S[0, x_] := x; S[k_, x_] := Total[Nest[CoefficientList[Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, nn}], x] &, {1}, k] Table[x^i, {i, 1, nn + 1}]]; R[0, x] := x; R[k_, x_] := S[k, x] - S[k - 1, x]; ReplacePart[ Sum[PadRight[
CoefficientList[Series[S[m, x] (R[m, x]^2 + (R[m, x] /. x -> x^2))/2, {x, 0, nn}], x], nn + 1], {m, 0, nn/2}], 2 -> 1]
CROSSREFS
Cf. A000676.
Sequence in context: A155042 A373638 A001851 * A303963 A304349 A024822
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Aug 04 2022
STATUS
approved