login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bit-reverse the odd part of the negaFibonacci representation of n: a(n) = A356327(A057889(A215024(n))).
4

%I #10 Aug 05 2022 15:36:04

%S 0,1,2,3,4,5,6,7,8,17,10,11,12,13,14,15,19,9,18,16,20,21,51,44,24,38,

%T 26,32,28,45,46,31,27,33,34,35,36,48,25,39,40,49,53,43,23,29,30,47,37,

%U 41,50,22,52,42,54,55,140,133,58,106,115,79,62,113,127,99

%N Bit-reverse the odd part of the negaFibonacci representation of n: a(n) = A356327(A057889(A215024(n))).

%C This sequence is a self-inverse permutation of the nonnegative integers similar to A343150, A344682, A345201 and A356332.

%H Rémy Sigrist, <a href="/A356331/b356331.txt">Table of n, a(n) for n = 0..6765</a>

%H Rémy Sigrist, <a href="/A356331/a356331.gp.txt">PARI program</a>

%H <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(a(n)) = n.

%F a(n) <= A000045(2*k) iff n <= A000045(2*k).

%e The first terms, alongside the corresponding negaFibonacci representations, are:

%e n a(n) nega(n) nega(a(n))

%e -- ---- ------- ----------

%e 0 0 0 0

%e 1 1 1 1

%e 2 2 100 100

%e 3 3 101 101

%e 4 4 10010 10010

%e 5 5 10000 10000

%e 6 6 10001 10001

%e 7 7 10100 10100

%e 8 8 10101 10101

%e 9 17 1001010 1010010

%e 10 10 1001000 1001000

%e 11 11 1001001 1001001

%e 12 12 1000010 1000010

%e 13 13 1000000 1000000

%e 14 14 1000001 1000001

%e 15 15 1000100 1000100

%e 16 19 1000101 1010001

%e 17 9 1010010 1001010

%e 18 18 1010000 1010000

%e 19 16 1010001 1000101

%e 20 20 1010100 1010100

%e 21 21 1010101 1010101

%o (PARI) See Links section.

%Y Cf. A000045, A057889, A215025, A343150, A344682, A345201, A356327, A356332.

%K nonn,base

%O 0,3

%A _Rémy Sigrist_, Aug 04 2022