login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(2*k, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).
3

%I #6 Aug 01 2022 14:24:20

%S 1,3,9,49,189,945,4641,21801,99021,487981,2335541,10800725,51363065,

%T 238573865,1121139065,5309312105,24543884585,113220920945,

%U 530677144745,2439321389945,11261499234425,52169097691865,239433905462945,1095710701133345,5029918350471545

%N a(n) = Sum_{k=0..n} binomial(2*k, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).

%F a(n) ~ binomial(2*n,n) * q(n) * 4/3.

%F a(n) ~ 2^(2*n) * exp(Pi*sqrt(n/3)) / (3^(5/4) * sqrt(Pi) * n^(5/4)).

%t Table[Sum[Binomial[2*k, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]

%Y Cf. A000009, A006134, A032443, A266232, A307496, A356268, A356269.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Aug 01 2022