OFFSET
1,3
COMMENTS
LINKS
Peter J. Taylor, Recurrence for the number of steps required to get one ball in each box, answer to question on Mathoverflow.
FORMULA
If n = 2^k, then a(n) = (n/2)*(n + 1 - k) - 1. - Jon E. Schoenfield, Oct 17 2022
Define s(n) = floor(n/2) - 1 + s(floor(n/2)) + A181132(ceiling(n/2) - 2) for n > 3, 0 otherwise. Then a(n) = n*(n-1)/2 - s(n). - Jon E. Schoenfield, Oct 18 2022
EXAMPLE
For n = 5, the number of balls in each box at each step is as follows:
.
| Boxes
Step | #1 #2 #3 #4 #5
-----+-------------------
0 | 5
1 | 3 2
2 | 3 1 1
3 | 2 2 1
4 | 2 1 2
5 | 2 1 1 1
6 | 1 2 1 1
7 | 1 1 2 1
8 | 1 1 1 2
9 | 1 1 1 1 1
.
Thus, a(5) = 9.
PROG
(PARI) a(n)=my(A, B, v); v=vector(n, i, 0); v[1]=n; A=0; while(v[n]==0, B=n; while(v[B]<2, B--); v[B+1]+=v[B]\2; v[B]-=v[B]\2; A++); A
CROSSREFS
KEYWORD
nonn
AUTHOR
Mikhail Kurkov, Oct 15 2022
STATUS
approved