%I #18 Sep 09 2022 14:50:44
%S 0,4,106,2384,51196,958170,24341911,636875169,14536767750,
%T 285039411789,6322647312660,202105291334913
%N a(n) is the first component x of the distance vector (x,y), x >= y >= 0, between two nodes of an infinite square lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. y is A356202(n).
%C If more than one solution exists, the one maximizing x and minimizing y is chosen.
%H Hugo Pfoertner, <a href="/A355565/a355565.gp.txt">PARI program for inverse problem</a>, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
%e n x y R(x,y) - n
%e 0 0 0 0
%e 1 4 2 -8.076*10^(-3)
%e 2 106 8 7.349*10^(-6)
%e 3 2384 606 2.206*10^(-8)
%e 4 51196 24881 -7.426*10^(-11)
%e 5 958170 903855 7.396*10^(-16)
%e 6 24341911 18345919 -7.814*10^(-16)
%e 7 636875169 303176603 -3.017*10^(-19)
%e 8 14536767750 7423167971 5.874*10^(-21)
%e 9 285039411789 247828120179 -2.461*10^(-24)
%e 10 6322647312660 6034957650107 -1.048*10^(-26)
%e 11 202105291334913 7948827377158 1.795*10^(-29)
%o (PARI) \\ using the function Rsqlatt(R) from the linked program
%o for (k=0, 11, print1(Rsqlatt(k)[1], ", ")) \\ _Hugo Pfoertner_, Sep 09 2022
%Y Cf. A355565, A355566, A355567, A355953, A355955.
%Y Cf. A356203, A356204 (similar for triangular lattice).
%K nonn,hard,more
%O 0,2
%A _Hugo Pfoertner_, Aug 01 2022
%E a(9)-a(11) from _Hugo Pfoertner_, Aug 22 2022