login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n minus the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).
4

%I #12 Jul 28 2022 21:16:03

%S 0,0,1,0,2,4,2,0,5,4,4,8,2,4,12,0,4,14,2,8,11,8,4,16,16,4,19,8,6,24,2,

%T 0,19,8,30,32,6,4,17,16,4,32,2,16,39,8,4,32,24,32,25,8,6,46,34,16,23,

%U 12,6,48,2,4,43,0,32,52,6,16,31,60,4,64,2,12,66,8,70,56,6,32,65,8,4,64,46,4,41,32,6,84,36

%N a(n) = n minus the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).

%H Antti Karttunen, <a href="/A356165/b356165.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = n - A356164(n).

%F For all odd primes p, a(p) = A001223(A000720(p)-1).

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A356165(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(n-k)));

%Y Cf. A000079 (positions of zeros), A000720, A001223, A003961, A191002, A356164, A356166.

%Y Cf. also A355945.

%K nonn

%O 1,5

%A _Antti Karttunen_, Jul 28 2022