Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 18 2023 03:28:43
%S 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,5,1,1,1,5,3,3,5,1,
%T 1,1,3,3,3,1,1,1,1,5,3,3,5,1,1,1,3,1,1,5,1,1,3,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,3,1,1,1,1,1,1,1,5,1,1,1,5,3,3,5,1
%N A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; t, t; u, t+u+v, v; u, u, v, v].
%C We apply the following substitutions to transform T(m) into T(m+1):
%C t
%C / \
%C / \
%C t t-----t
%C / \ ___\ / \ / \
%C / \ / / \ / \
%C u-----v u---t+u+v---v
%C / \ / \ / \
%C / \ / \ / \
%C u-----u-----v-----v
%C and:
%C u-----u-----v-----v
%C \ / \ / \ /
%C \ / \ / \ /
%C u-----v u---t+u+v---v
%C \ / ___\ \ / \ /
%C \ / / \ / \ /
%C t t-----t
%C \ /
%C \ /
%C t
%C T(m) has 3^m+1 rows.
%C All terms are odd.
%C As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).
%H Rémy Sigrist, <a href="/A356097/a356097.png">Colored representation of T(6)</a> (the color is function of T(6)(n,k))
%H Rémy Sigrist, <a href="/A356097/a356097_1.png">Representation of the multiples of 3 in T(7)</a>
%H Rémy Sigrist, <a href="/A356097/a356097_2.png">Representation of the multiples of 5 in T(7)</a>
%H Rémy Sigrist, <a href="/A356097/a356097_3.png">Representation of the multiples of 7 in T(7)</a>
%H Rémy Sigrist, <a href="/A356097/a356097_4.png">Representation of the 1's in T(7)</a>
%H Rémy Sigrist, <a href="/A356097/a356097_5.png">Representation of the terms congruent to 1 mod 4 in T(7)</a>
%H Rémy Sigrist, <a href="/A356097/a356097.gp.txt">PARI program</a>
%H Rémy Sigrist, <a href="https://arxiv.org/abs/2301.06039">Nonperiodic tilings related to Stern's diatomic series and based on tiles decorated with elements of Fp</a>, arXiv:2301.06039 [math.CO], 2023.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/N-flake#Hexaflake">Hexaflake</a>
%e Triangle T(0) is:
%e 1
%e 1 1
%e Triangle T(1) is:
%e 1
%e 1 1
%e 1 3 1
%e 1 1 1 1
%e Triangle T(2) is:
%e 1
%e 1 1
%e 1 3 1
%e 1 1 1 1
%e 1 1 5 1 1
%e 1 5 3 3 5 1
%e 1 1 3 3 3 1 1
%e 1 1 5 3 3 5 1 1
%e 1 3 1 1 5 1 1 3 1
%e 1 1 1 1 1 1 1 1 1 1
%o (PARI) See Links section.
%Y See A355855, A356002, A356096 and A356098 for similar sequences.
%Y Cf. A353174.
%K nonn,tabf
%O 0,8
%A _Rémy Sigrist_, Jul 26 2022